Good formal structures for flat meromorphic connections, I: Surfaces
نویسنده
چکیده
We prove existence of good formal structures for flat meromorphic connections on surfaces after suitable blowing up; this verifies a conjecture of Sabbah, and extends a result of Mochizuki for algebraic connections. Our proof uses a numerical criterion, in terms of spectral behavior of differential operators, under which one can obtain a decomposition of a formal flat connection in arbitrary dimension. This generalizes the usual Turrittin-Levelt decomposition in the one-dimensional case. To ensure satisfaction of the numerical criterion after blowing up, we use compactness of the valuative tree associated to a point on a surface.
منابع مشابه
Good formal structure for meromorphic flat connections on smooth projective surfaces
We prove the algebraic version of a conjecture of C. Sabbah on the existence of the good formal structure for meromorphic flat connections on surfaces after some blow up.
متن کاملGood formal structures for flat meromorphic connections, II: Higher-dimensional varieties
Given a formal flat meromorphic connection over an algebraic variety over a field of characteristic zero, or a complex analytic variety, we prove existence of good formal structures and a good Deligne-Malgrange lattice after a canonically determined blowing up. This extends our prior result for surfaces; it also reproduces a result of Mochizuki by restricting to algebraic connections. As in our...
متن کاملGood formal structures for flat meromorphic connections, III: Towards functorial modifications
Given a formal flat meromorphic connection over an excellent scheme over a field of characteristic zero, we proved existence of good formal structures and a good DeligneMalgrange lattice after suitably blowing up. For the corresponding situation over a complex analytic space, one immediately obtains the existence of suitable blowups locally, but it is not clear that these blowups can be glued t...
متن کاملGood Formal Structures for Flat Meromorphic Connections, Ii: Excellent Schemes
The Hukuhara-Levelt-Turrittin decomposition theorem gives a classification of differential modules over the field C((z)) of formal Laurent series resembling the decomposition of a finite-dimensional vector space equipped with a linear endomorphism into generalized eigenspaces. It implies that after adjoining a suitable root of z, one can express any differential module as a successive extension...
متن کاملWild Harmonic Bundles and Wild Pure Twistor D-modules
We study (i) asymptotic behaviour of wild harmonic bundles, (ii) the relation between semisimple meromorphic flat connections and wild harmonic bundles, (iii) the relation between wild harmonic bundles and polarized wild pure twistor D-modules. As an application, we show the hard Lefschetz theorem for algebraic semisimple holonomic D-modules, conjectured by M. Kashiwara. We also study resolutio...
متن کامل