Good formal structures for flat meromorphic connections, I: Surfaces

نویسنده

  • Kiran S. Kedlaya
چکیده

We prove existence of good formal structures for flat meromorphic connections on surfaces after suitable blowing up; this verifies a conjecture of Sabbah, and extends a result of Mochizuki for algebraic connections. Our proof uses a numerical criterion, in terms of spectral behavior of differential operators, under which one can obtain a decomposition of a formal flat connection in arbitrary dimension. This generalizes the usual Turrittin-Levelt decomposition in the one-dimensional case. To ensure satisfaction of the numerical criterion after blowing up, we use compactness of the valuative tree associated to a point on a surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Good formal structure for meromorphic flat connections on smooth projective surfaces

We prove the algebraic version of a conjecture of C. Sabbah on the existence of the good formal structure for meromorphic flat connections on surfaces after some blow up.

متن کامل

Good formal structures for flat meromorphic connections, II: Higher-dimensional varieties

Given a formal flat meromorphic connection over an algebraic variety over a field of characteristic zero, or a complex analytic variety, we prove existence of good formal structures and a good Deligne-Malgrange lattice after a canonically determined blowing up. This extends our prior result for surfaces; it also reproduces a result of Mochizuki by restricting to algebraic connections. As in our...

متن کامل

Good formal structures for flat meromorphic connections, III: Towards functorial modifications

Given a formal flat meromorphic connection over an excellent scheme over a field of characteristic zero, we proved existence of good formal structures and a good DeligneMalgrange lattice after suitably blowing up. For the corresponding situation over a complex analytic space, one immediately obtains the existence of suitable blowups locally, but it is not clear that these blowups can be glued t...

متن کامل

Good Formal Structures for Flat Meromorphic Connections, Ii: Excellent Schemes

The Hukuhara-Levelt-Turrittin decomposition theorem gives a classification of differential modules over the field C((z)) of formal Laurent series resembling the decomposition of a finite-dimensional vector space equipped with a linear endomorphism into generalized eigenspaces. It implies that after adjoining a suitable root of z, one can express any differential module as a successive extension...

متن کامل

Wild Harmonic Bundles and Wild Pure Twistor D-modules

We study (i) asymptotic behaviour of wild harmonic bundles, (ii) the relation between semisimple meromorphic flat connections and wild harmonic bundles, (iii) the relation between wild harmonic bundles and polarized wild pure twistor D-modules. As an application, we show the hard Lefschetz theorem for algebraic semisimple holonomic D-modules, conjectured by M. Kashiwara. We also study resolutio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008